Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

5-Chloro-2-methylisothiazolin-3-one: intermolecular two-dimensional networks via unusual $\mathrm{C}-\mathrm{Cl} \cdots \mathrm{O}=\mathrm{C}$ interactions

Masaru Kato, ${ }^{\text {a }}$ Takashi Fujihara, ${ }^{\mathbf{b}_{*}}$ Daisaku Yano ${ }^{\mathbf{c}}$ and Akira Nagasawa ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Chemistry, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama City, Saitama 338-8570, Japan, ${ }^{\mathbf{b}}$ Molecular Analysis and Life Science Center, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama City, Saitama 338-8570, Japan, and ${ }^{\text {c }}$ Organo Corporation, 4-1 Nishi-Onuma 4-Chome, Sagamihara City, Kanagawa 229-0012, Japan Correspondence e-mail: fuji@chem.saitama-u.ac.jp
Received 23 April 2007; accepted 28 May 2007
Key indicators: single-crystal X-ray study; $T=173 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.044 ; w R$ factor $=0.098 ;$ data-to-parameter ratio $=19.9$.

The title molecule, $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{ClNOS}$, contains an essentially planar five-membered ring. The $\mathrm{C} \cdots \mathrm{C}(=\mathrm{O})$ bond is slightly longer than expected. In the crystal structure, two-dimensional networks are formed through intermolecular $\mathrm{C}-\mathrm{Cl} \cdots \mathrm{O}=\mathrm{C}$ interactions $[\mathrm{Cl} \cdots \mathrm{O}=2.9811$ (19) \AA].

Related literature

Some crystal structures that contain the title molecule in cocrystals have been reported previously (Suzuki et al., 1997; Sekine, Jomoto et al., 2003; Sekine, Mitsumori et al., 2003). For related literature, see: Frisch et al. (2003); Fujii et al. (2005); Glendening et al. (2001); Kato et al. (2007); Lewis et al. (1973); Wiberg (1968).

Experimental

Crystal data

$\mathrm{C}_{4} \mathrm{H}_{4}$ ClNOS	Monoclinic, $P 2_{1} / c$
$M_{r}=149.59$	$a=8.0290(16) \AA$

$$
\begin{aligned}
& b=13.978(3) \AA \\
& c=5.7375(11) \AA \\
& \beta=107.812(4) \AA^{\circ} \\
& V=613.1(2) \AA^{3} \\
& Z=4
\end{aligned}
$$

Mo $K \alpha$ radiation $\mu=0.86 \mathrm{~mm}^{-1}$
$T=173$ (2) K
$0.40 \times 0.09 \times 0.09 \mathrm{~mm}$

Data collection
Bruker SMART CCD area-detector
4451 measured reflections diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick 1996)
$T_{\text {min }}=0.726, T_{\text {max }}=0.927$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.098$
$S=1.00$
1474 reflections

74 parameters
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.33 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.27 \mathrm{e}^{-3}$

Table 1
Selected bond lengths (\AA).

$\mathrm{C} 1-\mathrm{O} 1$	$1.227(3)$	$\mathrm{C} 3-\mathrm{Cl} 1$	$1.710(2)$
$\mathrm{C} 1-\mathrm{N} 1$	$1.383(3)$	$\mathrm{C} 3-\mathrm{S} 1$	$1.721(2)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.458(3)$	$\mathrm{C} 4-\mathrm{N} 1$	$1.464(3)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.332(3)$	$\mathrm{N} 1-\mathrm{S} 1$	$1.686(2)$

Data collection: SMART-W2K/NT (Bruker, 2003); cell refinement: SAINT-W2K/NT (Bruker, 2003); data reduction: SAINT-W2K/NT; program(s) used to solve structure: SHELXTL-NT (Bruker, 2003); program(s) used to refine structure: SHELXTL-NT; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL-NT.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2375).

References

Bruker (2003). SAINT-W2K/NT (Version 5.0), SMART-W2K/NT (Version 5.6) and SHELXTL-NT (Version 6.14). Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Frisch, M. J. et al. (2003). GAUSSIAN03. Revision B.04. Gaussian Inc., Wallingford, Connecticut, USA.
Fujii, I., Mano, Y. \& Hirayama, N. (2005). Acta Cryst. E61, o1456-o1458.
Glendening, E. D., Badenhoop, J. K., Reed, A. E., Carpenter, J. E., Bohmann, J. A., Morales, C. M. \& Weinhold, F. (2001). NBO. Version 5.0. Theoretical Chemistry Institute, University of Wisconsin, Madison, Wisconsin, USA.
Kato, M., Fujihara, T., Yano, D. \& Nagasawa, A. (2007). Acta Cryst. E63, o1839-o1841.
Lewis, S. N., Miller, G. A. \& Law, A. B. (1973). US Patent No. 3761488.
Sekine, A., Jomoto, K., Uekusa, H., Ohashi, Y. \& Yagi, M. (2003). Anal. Sci. 19, x45-x46.
Sekine, A., Mitsumori, T., Uekusa, H., Ohashi, Y. \& Yagi, M. (2003). Anal. Sci. 19, x47-x48.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Suzuki, H., Takagi, H. \& Sato, R. (1997). Tetrahedron Lett. 38, 4563-4566.
Wiberg, K. B. (1968). Tetrahedron, 24, 1083-1096.

supplementary materials

Acta Cryst. (2007). E63, o3097 [doi:10.1107/S1600536807026025]

5-Chloro-2-methylisothiazolin-3-one: intermolecular two-dimensional networks via unusual \mathbf{C} Cl. $\mathrm{O}=\mathrm{C}$ interactions

M. Kato, T. Fujihara, D. Yano and A. Nagasawa

Comment

The title compound, 5-Chloro-2-methylisothiazolin-3-one (I) is widely used as a biocide. Some molecular structures which contain (I) as co-crystals have been reported previously (Suzuki et al., 1997; Sekine, Jomoto et al., 2003; Sekine, Mitsumori et al., 2003) but there are no reports on the crystal structure of (I) itself. We are interested in the relationship between the crystal structures of isothiazolines and their biocidal activities (Kato et al., 2007) and report here the crystal structure of (I).

The molecular structure of (I), with the atom-labelling scheme, is shown in Fig. 1. Selected bond lengths and angles are shown in Table 1. The $\mathrm{C} 1-\mathrm{C} 2$ bond length is slightly longer than that previously reported (1.441 (3) \AA, Sekine, Mitsumori et al., 2003; 1.438 (4) Å, Sekine, Jomoto et al., 2003; $1.437 \AA$ Å, Suzuki et al., 1997). The five-membered ring (S1/N1/C1—C3) is planar and the largest deviation from the plane being for atom $\mathrm{N} 1[0.0086(12) \AA]$. The deviation of the C 4 atom in the methyl group from the five-membered ring is 0.2214 (36) \AA despite the N 1 atom with $s p^{3}$-hybridization state. The planarity around the N 1 atom indicates the delocalization of the lone pair of electrons on the N 1 atom. An intermolecular interaction between Cl 1 and O 1 is observed (Fig. 2) and its distance is 2.9811 (19) \AA. This distance is the same as reported previously (2.981 (2) \AA, Fujii et al., 2005). The Cl1 atom accepts the lone pair electrons of O1 and this intermolecular interaction stabilizes the crystal structure.

We performed the DFT calculations on (I) and 2-methylisothiazolin-3-one (II) by the B3LYP method for elucidating its electronic structure using the Gaussian03 package program (Frisch et al., 2003). The $6-31+\mathrm{G}(\mathrm{d}, \mathrm{p}$) basis set was used for all the elements. The optimized geometry shows a good agreement with the crystal structure. The Wiberg bond indices (Wiberg, 1968) were evaluated by natural-bond orbital (NBO) analysis (Glendening et al., 2001) and these values are shown in Fig. 3. The almost Wiberg bond indices, except that of the $\mathrm{C} 1-\mathrm{N} 1$ bond, in (I) tend to be lower than those in (II). This may be due to the electron-withdrawing Cl on the C 3 instead of H , and decreases the electron density on the five-membered ring. These results correspond to the higher activity of (I) as a biocide compared to that of (II) since the ease of cleavage of the N1—S1 bond is claimed to give rise to the biocidal activity (Lewis et al., 1973).

Experimental

Single crystals of (I) suitable for X-ray diffraction were obtained as follows:
4-Chloro-2-methylisothiazolin-3-one was extracted from 'Kathon WT', which was purchased from Rohm and Hass, by 1,2-dichloroethane and was dried with anhydrous MgSO_{4}. Crude crystals were obtained by evaporation of the solvents and were recrystallized from ligroin. Elemental analysis, found: C 31.87 , H $2.52, \mathrm{~N} 9.20 \%$; calcd. for $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{ClNOS}$: C 32.11, H 2.70, N 9.36\%.

supplementary materials

Refinement

H atoms were placed in calculated positions $[\mathrm{C}-\mathrm{H}=0.95 \& 0.98 \AA]$ and included in the refinement in the riding-model approximation with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\mathrm{eq}}(\mathrm{C})$ for methyl H atoms.

Figures

Fig. 1. The molecular structure the title compound with the atom-numbering scheme. Displacement ellipsoids are shown at the 50% probability level.

Fig. 2. Diagram showing the intermolecular $\mathrm{C}=\mathrm{O} \cdots \mathrm{Cl}-\mathrm{C}$ interactions (dashed line).

Fig. 3. Wiberg bond indecies in (I) (left) and (II) (right).

5-Chloro-2-methylisothiazolin-3-one

Crystal data

$\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{ClNOS}$
$M_{r}=149.59$
Monoclinic, $P 2{ }_{1} / c$
Hall symbol: -P 2ybc
$a=8.0290(16) \AA$
$b=13.978(3) \AA$
$c=5.7375(11) \AA$
$\beta=107.812(4)^{\circ}$
$V=613.1(2) \AA^{3}$
$Z=4$
$F_{000}=304$
$D_{\mathrm{x}}=1.621 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
$\lambda=0.71073 \AA$
Cell parameters from 824 reflections
$\theta=2.7-24.8^{\circ}$
$\mu=0.86 \mathrm{~mm}^{-1}$
$T=173$ (2) K
Needle, colorless
$0.40 \times 0.09 \times 0.09 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
Radiation source: fine-focus sealed tube

1474 independent reflections
1157 reflections with $I>2 \sigma(I)$

Monochromator: graphite
Detector resolution: 8.366 pixels mm^{-1}
$T=173(2) \mathrm{K}$
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick 1996)
$T_{\text {min }}=0.726, T_{\text {max }}=0.927$
4451 measured reflections

$$
\begin{aligned}
& R_{\text {int }}=0.044 \\
& \theta_{\max }=28.0^{\circ} \\
& \theta_{\min }=2.7^{\circ} \\
& h=-10 \rightarrow 10 \\
& k=-14 \rightarrow 18 \\
& l=-7 \rightarrow 7
\end{aligned}
$$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.098$
$S=1.00$
1474 reflections

74 parameters

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0484 P)^{2}\right]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=0.33 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.27$ e \AA^{-3}
Extinction correction: none

Special details

Geometry. Distance SDEV

2.9811 (0.0019) O1-Cl1_\$1

Least-squares planes (x, y, z in crystal coordinates) and deviations from them (* indicates atom used to define plane)
$-0.2147(0.0078) x+12.2058(0.0061) y-2.6112(0.0038) z=5.0659(0.0082)$
*-0.0061 (0.0013) $\mathrm{C} 1 *-0.0006(0.0014) \mathrm{C} 2 * 0.0052(0.0013) \mathrm{C} 3 * 0.0086(0.0012) \mathrm{N} 1 *-0.0071(0.0010) \mathrm{S} 1-0.0161$
(0.0029) O1 - 0.2214 (0.0036) C4 0.0272 (0.0032) Cl1

Rms deviation of fitted atoms $=0.0061$
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C1	$0.5852(3)$	$0.59959(15)$	$0.8169(4)$	$0.0214(5)$
C2	$0.4002(3)$	$0.57570(16)$	$0.7183(4)$	$0.0222(5)$

H1	0.3505	0.5427	0.5683	0.027^{*}
C3	$0.3088(3)$	$0.60554(16)$	$0.8631(4)$	$0.0229(5)$
C4	$0.7856(3)$	$0.66864(17)$	$1.2057(4)$	$0.0287(6)$
H2A	0.8755	0.6419	1.1412	0.043^{*}
H2B	0.7960	0.6397	1.3651	0.043^{*}
H2C	0.8014	0.7380	1.2246	0.043^{*}
C11	$0.08933(8)$	$0.59406(5)$	$0.81908(12)$	$0.0338(2)$
N1	$0.6122(2)$	$0.64805(13)$	$1.0356(4)$	$0.0229(4)$
O1	$0.7041(2)$	$0.58234(11)$	$0.7303(3)$	$0.0289(4)$
S1	$0.43218(8)$	$0.66265(4)$	$1.12464(11)$	$0.02660(19)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0250(12)$	$0.0201(11)$	$0.0199(12)$	$-0.0007(9)$	$0.0080(10)$	$0.0019(9)$
C2	$0.0236(12)$	$0.0230(12)$	$0.0192(12)$	$-0.0016(9)$	$0.0051(10)$	$-0.0019(9)$
C3	$0.0206(12)$	$0.0241(12)$	$0.0239(12)$	$-0.0002(9)$	$0.0067(10)$	$0.0021(9)$
C4	$0.0272(14)$	$0.0339(14)$	$0.0231(13)$	$-0.0033(11)$	$0.0049(11)$	$-0.0032(10)$
C11	$0.0209(3)$	$0.0439(4)$	$0.0370(4)$	$0.0012(3)$	$0.0094(3)$	$0.0014(3)$
N1	$0.0209(10)$	$0.0271(11)$	$0.0210(10)$	$-0.0021(8)$	$0.0069(8)$	$-0.0039(8)$
O1	$0.0247(9)$	$0.0386(10)$	$0.0253(10)$	$-0.0027(7)$	$0.0103(7)$	$-0.0061(7)$
S1	$0.0271(3)$	$0.0308(4)$	$0.0248(3)$	$-0.0009(3)$	$0.0123(3)$	$-0.0056(2)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{C} 1-\mathrm{O} 1$	$1.227(3)$	$\mathrm{C} 3-\mathrm{S} 1$	$1.721(2)$
$\mathrm{C} 1-\mathrm{N} 1$	$1.383(3)$	$\mathrm{C} 4-\mathrm{N} 1$	$1.464(3)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.458(3)$	$\mathrm{C} 4-\mathrm{H} 2 \mathrm{~A}$	0.9800
$\mathrm{C} 2-\mathrm{C} 3$	$1.332(3)$	$\mathrm{C} 4-\mathrm{H} 2 \mathrm{~B}$	0.9800
$\mathrm{C} 2-\mathrm{H} 1$	0.9500	$\mathrm{C} 4-\mathrm{H} 2 \mathrm{C}$	1.9800
$\mathrm{C} 3-\mathrm{C} 11$	$1.710(2)$	$\mathrm{N} 1-\mathrm{S} 1$	$1096(2)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 1$	$122.5(2)$	$\mathrm{N} 1-\mathrm{C} 4-\mathrm{H} 2 \mathrm{~B}$	109.5
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$128.7(2)$	$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 2 \mathrm{~B}$	109.5
$\mathrm{~N} 1-\mathrm{C} 1-\mathrm{C} 2$	$108.8(2)$	$\mathrm{N} 1-\mathrm{C} 4-\mathrm{H} 2 \mathrm{C}$	109.5
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$112.1(2)$	$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 2 \mathrm{C}$	109.5
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 1$	123.9	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4$	$123.7(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 1$	123.9	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{S} 1$	$115.04(16)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 11$	$128.16(19)$	$\mathrm{N} 1-\mathrm{S} 1-\mathrm{C} 3$	$120.17(16)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{S} 1$	$114.15(18)$	$89.86(10)$	
$\mathrm{C} 11-\mathrm{C} 3-\mathrm{S} 1$	$117.69(14)$	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 1-\mathrm{S} 1$	$-178.96(17)$
$\mathrm{N} 1-\mathrm{C} 4-\mathrm{H} 2 \mathrm{~A}$	109.5	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{S} 1$	$1.3(2)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$179.8(2)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{S} 1-\mathrm{C} 3$	$-1.33(17)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-0.5(3)$	$\mathrm{C} 4-\mathrm{N} 1-\mathrm{S} 1-\mathrm{C} 3$	$-169.62(18)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{Cl} 1$	$179.39(17)$	$\mathrm{C} 11-\mathrm{C} 3-\mathrm{S} 1-\mathrm{N} 1-\mathrm{N} 1$	$0.99(19)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{S} 1$	$-0.4(3)$	$-178.85(14)$	
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4$	$-11.1(3)$	$169.1(2)$	

sup-4

Fig. 1

supplementary materials

Fig. 2

Fig. 3

